

An Online Optimization-Based Decision Support Tool for Small **Farmers in India: Learning in Non-stationary Environments**

Introduction

- Small farmers in India are facing a decline in the productivity and profitability in the agricultural sector.
- Climate changes exacerbate the situation.
- Crop management decision support systems can help farmers to reduce riskiness of revenue stream, but they do not have access.

Objectives

- Address the challenges faced by small farmers in India by developing an online optimization-based decision support tool for crop management.
- The decision support tool should be cheap to deploy, adaptive to market changes, and resource efficient.

Methods

State space

$$S \coloneqq \{(crop, maturity, expiry, flag)\}$$

Action space

 $A \coloneqq \{no \ act, harvest\} \cup \{plant(c) | \forall c \in C\}$

Transition function

$$P_t: S \times A \times S \to \{0, 1\}$$

Reward function

$$R_{t(s,a)} \coloneqq \begin{cases} k, \\ y_t(s,a), \\ 0, \end{cases}$$

constraint violation a = harvestotherwise

$$\pi^* = rg \max_{\pi} \mathbb{E} \left[\sum_{t=0}^T \gamma^t R_t(s_t, a_t) \mid \pi
ight]$$

$$V(s) = \max_{a} \sum_{s'} Pig(s,a,s'ig) ig[R(s,a) + \gamma Vig(s'ig) ig]$$

Algorithm 1: Offline version trix P1: Solve the MDP (S, A, P, \hat{R}) for a policy:

# of Entries	Online	Offline
State Space	560	97,440
Transition	3,136,000	94,945,536,000

Tuxun Lu¹, Aviva Prins²

¹Johns Hopkins University, ²University of Maryland, College Park ¹tlu32@jhu.edu, ²aviva@cs.umd.edu

Λ			ri	4	h	r	
	Y	U		L			L

Input: Historical price data, initial state s_0 , transition ma-

Forecast: Approximate \hat{R} with a forecast of historical data.

 $\pi \in \arg \max g_{\hat{R}}(\pi)$

Output: $\pi = \{\pi_t \mid t = 1, ..., T\}$

Algorithm 2: FWL with time-varying transition function P_t **Input:** Smoothing parameter $\theta \in [0, 1)$, initial state s_0 , transition matrices $\{P_t\}$ **Initialization:** $\hat{R}_0 \leftarrow R_{-1}$ 1: for t = 1 : T do

Update the weighted average of historical rewards:

$$\hat{R}_t = (1-\theta)\hat{R}_{t-1} + \theta R_{t-1}$$

Solve the MDP (S, A, P_t, \hat{R}_t) for a policy:

 $\pi_t \in rg\max g_{\hat{R}_t}(\pi)$

 $|\mathcal{S}| = 2|\mathcal{C}| \times \max_{\alpha \in \mathcal{C}} (\text{c.max_maturity}) \times \max_{\alpha \in \mathcal{C}} (\text{c.lifespan})$

Execute π_t to transition from s_{t-1} to s_t 5: end for **Output:** π_t at each timestep $t \in \{1, \ldots, T\}$

Li, Yingying, and Na Li. "Online learning for markov decision processes in nonstationary environments: A dynamic regret analysis." 2019 American Control Conference (ACC). IEEE, 2019.

Results

н ₃ ,7	H	н ² ""С	H	H		н , ⁶ , , о	H	н 1 ^{,30}	Н	H	H	H	X	0.22	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2.03	H	X	1.1.A
, 201	201 201	202	1020 2027	2022	2027.25	S2, 201	2.0 2022	2022	2021	, 2027	, ² 01	10 202	202	202	11 ° 2021	1. JOJ	102)	2027	202	
0	ne p	prog	ress	ion	of sta ⁻	tes a	nd a	ctio	ns yi	ield	ed l	ру с	our s	imu	latio	ons	witł	າ hig	gh re	evenue
	н	H	H I	н)	X			Н	Н	H	Н	Н	Н	X	X			Н	Н	Н
1	H	H H	H I	н) н)	x x x			H H	H H	H H	H H	H H	H H	X X	X			Н	H H	H X
	H H H	H .	H I H I H I	н > н > н >				H H	H H H	H H H	H H H	H H H	H H H	x x x	X			Н	H H H	H X X
	H H	H . H . H .	н I н I н I			100 ¹⁸	51.0 ² .0	H H	н н н	н н н	H H H	н н н	н н н	X X X	x	11.05	1110	H	H H H	H X X

Figure 6: Cumulative revenue yielded by each policy over multiple

Conclusions & Future Work

> The policy of actions produced by FWL are fast to generate, intuitive, produce high cumulative revenues, and are approximately equivalent to a planning alternative. \succ In the future, we aim to study the problem in a multi-agent setting. The transition function could be probabilistic to reflect real world crop growing. We are also interested in adjusting R to better reflect different goals, such as risk reduction, portfolio diversification.

Resources

Arxiv: https://arxiv.org/pdf/2311.17277.pdf

Acknowledgements

We thank Christine Herlihy and Jasmine Stephano for helpful research discussions and code contributions. Many thanks to Dileep K H, Kaushik Kappagantulu, and the team at Kheyti for partnership and feedback, especially in developing the Markovian model. This project was partially funded by the NSF REU-CAAR grant 2150382 and NSF CAREER Award IIS-1846237. The support of JHU WSE Undergraduate Conference Travel Fund and reimbursement from UMD enabled Tuxun Lu to attend this conference.

