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Ø Address the challenges faced by small 
farmers in India by developing an online 
optimization-based decision support tool for 
crop management.

Ø The decision support tool should be cheap 
to deploy, adaptive to market changes, and 
resource efficient. 
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Introduction
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State space 

𝑆 ≔ {(𝑐𝑟𝑜𝑝,𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦, 𝑒𝑥𝑝𝑖𝑟𝑦, 𝑓𝑙𝑎𝑔)}

Action space 

𝐴 ≔ 𝑛𝑜	𝑎𝑐𝑡, ℎ𝑎𝑟𝑣𝑒𝑠𝑡 ∪ {𝑝𝑙𝑎𝑛𝑡(𝑐)|∀𝑐 ∈ 𝐶}

Transition function 

𝑃! ∶ 𝑆	×	𝐴	×	𝑆 → {0, 1}	

Reward function 

𝑅! ",$ ≔ I
𝑘, 	 constraint	violation

𝑦! 𝑠, 𝑎 , 	 𝑎 = ℎ𝑎𝑟𝑣𝑒𝑠𝑡
0, 	 otherwise
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Results

Algorithm

Conclusions & Future Work

Ø Small farmers in India are facing a decline in 
the productivity and profitability in the 
agricultural sector.

Ø Climate changes exacerbate the situation.
Ø Crop management decision support 

systems can help farmers to reduce 
riskiness of revenue stream, but they do not 
have access.

Figure 2: One progression of states and actions yielded by our simulations with high revenue

Figure 3: Progression of states and actions yielded by changing the discount factor γ

Figure 6:  Cumulative revenue yielded by each policy over multiple 
values of θ

Figure 5:  The dynamic regret of the online and offline 
outputs

Figure 7: Immediate versus delayed reward prioritization 
yields different policies and cumulative revenues.

Figure 4: Comparison of runtimes over different timestep 
sizes (the simulation length remains ten years).

Ø The policy of actions produced by FWL are fast to generate, intuitive, produce high 
cumulative revenues, and are approximately equivalent to a planning alternative.

Ø In the future, we aim to study the problem in a multi-agent setting. The transition 
function could be probabilistic to reflect real world crop growing. We are also 
interested in adjusting 𝑅 to better reflect different goals, such as risk reduction, 
portfolio diversification.
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# of Entries Online Offline

State Space 560 97,440

Transition 3,136,000 94,945,536,000

Algorithm 1: Offline version
Input: Historical price data, initial state s0, transition ma-

trix P
Forecast: Approximate R̂ with a forecast of historical data.

1: Solve the MDP (S,A, P, R̂) for a policy:

⇡ 2 argmax
⇡

gR̂(⇡)

Output: ⇡ = {⇡t | t = 1, . . . , T}

Algorithm 2: FWL with time-varying transition function Pt

Input: Smoothing parameter ✓ 2 [0, 1), initial state s0,
transition matrices {Pt}

Initialization: R̂0  R�1

1: for t = 1 : T do

2: Update the weighted average of historical rewards:

R̂t = (1� ✓)R̂t�1 + ✓Rt�1

3: Solve the MDP (S,A, Pt, R̂t) for a policy:

⇡t 2 argmax
⇡

gR̂t
(⇡)

4: Execute ⇡t to transition from st�1 to st
5: end for

Output: ⇡t at each timestep t 2 {1, . . . , T}
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Figure 1: Illustration of state progression under different actions


