
An Online Optimization-Based Decision Support Tool for Small
Farmers in India: Learning in Non-stationary Environments

Tuxun Lu1, Aviva Prins2
1Johns Hopkins University, 2University of Maryland, College Park

Ø Address the challenges faced by small
farmers in India by developing an online
optimization-based decision support tool for
crop management.

Ø The decision support tool should be cheap
to deploy, adaptive to market changes, and
resource efficient.

Objectives

Introduction

Methods
State space

𝑆 ≔ {(𝑐𝑟𝑜𝑝,𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦, 𝑒𝑥𝑝𝑖𝑟𝑦, 𝑓𝑙𝑎𝑔)}

Action space

𝐴 ≔ 𝑛𝑜	𝑎𝑐𝑡, ℎ𝑎𝑟𝑣𝑒𝑠𝑡 ∪ {𝑝𝑙𝑎𝑛𝑡(𝑐)|∀𝑐 ∈ 𝐶}

Transition function

𝑃! ∶ 𝑆	×	𝐴	×	𝑆 → {0, 1}	

Reward function

𝑅! ",$ ≔ I
𝑘, 	 constraint	violation

𝑦! 𝑠, 𝑎 , 	 𝑎 = ℎ𝑎𝑟𝑣𝑒𝑠𝑡
0, 	 otherwise

Acknowledgements

We thank Christine Herlihy and Jasmine
Stephano for helpful research discussions
and code contributions. Many thanks to
Dileep K H, Kaushik Kappagantulu, and the
team at Kheyti for partnership and
feedback, especially in developing the
Markovian model. This project was partially
funded by the NSF REU-CAAR grant
2150382 and NSF CAREER Award IIS-
1846237. The support of JHU WSE
Undergraduate Conference Travel Fund
and reimbursement from UMD enabled
Tuxun Lu to attend this conference.

Results

Algorithm

Conclusions & Future Work

Ø Small farmers in India are facing a decline in
the productivity and profitability in the
agricultural sector.

Ø Climate changes exacerbate the situation.
Ø Crop management decision support

systems can help farmers to reduce
riskiness of revenue stream, but they do not
have access.

Figure 2: One progression of states and actions yielded by our simulations with high revenue

Figure 3: Progression of states and actions yielded by changing the discount factor γ

Figure 6: Cumulative revenue yielded by each policy over multiple
values of θ

Figure 5: The dynamic regret of the online and offline
outputs

Figure 7: Immediate versus delayed reward prioritization
yields different policies and cumulative revenues.

Figure 4: Comparison of runtimes over different timestep
sizes (the simulation length remains ten years).

Ø The policy of actions produced by FWL are fast to generate, intuitive, produce high
cumulative revenues, and are approximately equivalent to a planning alternative.

Ø In the future, we aim to study the problem in a multi-agent setting. The transition
function could be probabilistic to reflect real world crop growing. We are also
interested in adjusting 𝑅 to better reflect different goals, such as risk reduction,
portfolio diversification.

1tlu32@jhu.edu, 2aviva@cs.umd.edu

Resources
Arxiv:
https://arxiv.org/pdf/2311.17277.pdf

Li, Yingying, and Na Li. "Online learning for markov decision processes
in nonstationary environments: A dynamic regret analysis." 2019
American Control Conference (ACC). IEEE, 2019.

of Entries Online Offline

State Space 560 97,440

Transition 3,136,000 94,945,536,000

Algorithm 1: Offline version
Input: Historical price data, initial state s0, transition ma-

trix P
Forecast: Approximate R̂ with a forecast of historical data.

1: Solve the MDP (S,A, P, R̂) for a policy:

⇡ 2 argmax
⇡

gR̂(⇡)

Output: ⇡ = {⇡t | t = 1, . . . , T}

Algorithm 2: FWL with time-varying transition function Pt

Input: Smoothing parameter ✓ 2 [0, 1), initial state s0,
transition matrices {Pt}

Initialization: R̂0 R�1

1: for t = 1 : T do

2: Update the weighted average of historical rewards:

R̂t = (1� ✓)R̂t�1 + ✓Rt�1

3: Solve the MDP (S,A, Pt, R̂t) for a policy:

⇡t 2 argmax
⇡

gR̂t
(⇡)

4: Execute ⇡t to transition from st�1 to st
5: end for

Output: ⇡t at each timestep t 2 {1, . . . , T}

Algorithm 1: Offline version
Input: Historical price data, initial state s0, transition ma-

trix P
Forecast: Approximate R̂ with a forecast of historical data.

1: Solve the MDP (S,A, P, R̂) for a policy:

⇡ 2 argmax
⇡

gR̂(⇡)

Output: ⇡ = {⇡t | t = 1, . . . , T}

Algorithm 2: FWL with time-varying transition function Pt

Input: Smoothing parameter ✓ 2 [0, 1), initial state s0,
transition matrices {Pt}

Initialization: R̂0 R�1

1: for t = 1 : T do

2: Update the weighted average of historical rewards:

R̂t = (1� ✓)R̂t�1 + ✓Rt�1

3: Solve the MDP (S,A, Pt, R̂t) for a policy:

⇡t 2 argmax
⇡

gR̂t
(⇡)

4: Execute ⇡t to transition from st�1 to st
5: end for

Output: ⇡t at each timestep t 2 {1, . . . , T}

…

…

0 0

actioncurrent state
(crop, days until

harvestable, expected
yield)

next state actionnext state
(crop, days until

harvestable, expected
yield)

next state

(🔳, 0, 0, 0)

(🍅, 5, 50kg)

(🥔, 8, 10kg)

(🌽, 10, 10kg) (🔳, 0, 0)

₹ 1,000 ₹ 0 profit ₹ 0

 🚜

❌

🍅

🥔

��

(🔳, 0, 0)
(🥔, 0, 10kg)

Figure 1: Illustration of state progression under different actions

