
Final Project Report
Sicen (Susan) Liu, Tuxun (Nick) Lu, Wenxuan Lu, Xuerui (Jerry) Qian

The project tackles the problem of brain tumor segmentation and tumor type classification. Brain tumors
are a type of neurodegenerative diseases that are represented by abnormal glutamate signaling and release
in the brain. Early detection and treatment of brain tumors are important for the well-being of patients.
Magnetic Resonance Imaging (MRI) is a non-invasive neuro-imaging technique that can efficiently
capture the structural organization of brain soft tissues. To ease the diagnosis with MRI scans, especially
to determine if a brain tumor is low-grade tumors LGG (grades I and II; LGG being a Low-Grade
Glioma), which are generally benign, or high-grade tumors HGG (grades III and IV), which are highly
malignant, we developed a pipeline that could recognize tumor regions and classify tumor types.

Initial Project Goals & Goals Achieved
The initial goal of the project aims to follow an existing workflow for brain tumor identification and
classification using MRI scans [3]. The specific goals are broken down as follows:

● Implement the four key steps: pre-processing, imaging segmentation, feature extraction, and
tumor classification.

● Evaluate the result using a variety of evaluation metrics, including accuracy, precision, specificity,
sensitivity, F-measure, etc

● Compare the classification part of the algorithm with multiple other dissimilar methods, such as
KNN, SVM, and DNN

Due to time and computing resources constraints, we haven’t had
the opportunities to finish all of them. Specifically, we have
finished the following:

● We have implemented the pipeline of the algorithm,
including pre-processing, imaging segmentation, feature
extraction, and eventually classification

● We evaluated the results of the classification using
accuracy, represented by a confusion matrix

● We analyzed our process and found areas for future
improvements

Methods

Pre-processing
To obtain a higher accuracy in tumor segmentation and classification, the
raw MRI image needs to be denoised. In this project, the non-local means
denoising method is applied, and an example of transformation is shown on
the right.

Image Segmentation
The k-means clustering method is used for tumor segmentation, and various post-processing steps are
applied to achieve a better performance.



For each MRI slice, the intensity values are treated as the input to the k-means clustering algorithm. The
choice of the hyper parameter k is crucial to the success of the algorithm because a small k might not be
able to differentiate the tumor regions from regions with similar pixel intensities, whereas a large k might
break the completeness of a tumor region.
Through empirical exploration on our
dataset, we choose k = 15, which generates a
relatively accurate result on tumor detection.
Each of the 15 clusters has a score, in this
project, we merge the clusters with top scores
to generate the final representation of the
segmented tumor. An example of clustering
is shown on the right, and the merged result
is shown below along with the ground truth.

Due to the heterogeneity of tumor regions
and brain structure, k-means clustering may
not accurately segment the whole tumor region out. Several
problems with the clustering results include: (1) unsmooth or
incomplete tumor boundary; (2) unable to segment the whole
region within the tumor boundary; (3) due to similarity in
pixel intensity, a few distant brain regions are also assigned
with the same cluster as the tumor. To alleviate these
problems, we apply post-processing steps, including
morphology opening and closing, binary fill, and median
filter sequentially to improve the segmentation performance.

Feature Extraction
Upon finishing the imaging segmentation, we extract three sets of robust features from the tumor regions
for each slice using information-theoretic measures, wavelet packet Tsallis entropy (WPTE), and
scattering transform (ST).

First, based on the intensity distribution of pixels in the tumor regions, we calculate skewness, kurtosis,
entropy, variance, and mean to capture high-level tumor characteristics.

Secondly, we choose the popular Coiflet wavelet and apply the wavelet packet decomposition to tumor
regions. One pass through the decomposition algorithm generates four
sets of coefficients, representing the low-level signals and the
high-level signals consisting of the horizontal, vertical, and diagonal
components. An example one-level decomposition is shown on the
right. By repeatedly passing the image through high-pass filters and
low-pass filters for three times, we obtain 64 sets of wavelet
approximation coefficients. The PyWavelets package is used for the
wavelet packet decomposition, and we calculate the Tsallis entropy of
each set of coefficients to obtain a 64-dim feature vector [1].

Thirdly, scattering transform is applied to the MRI images to extract
representative low-level features. Scattering transform is a
complex-valued convolutional neural network with multiple layers of
wavelet transforms. The nonlinear signal representation obtained from it is invariant of translation,



rotation, scaling, and frequency shifting, which is highly suitable for the feature extraction task of brain
tumors. The Kymatio package is used to do the scattering transform, which results in a 1401-dim feature
vector [2].

Finally, the features extracted from the three parts are combined together to create a design matrix that
will be fed into the autoencoder for tumor classification.

Classification
For the actual classification part, we first train a deep autoencoder (DAE) to learn the compact
representations of the features we have extracted. We feed the features into the encoder and then decoder
and compare the results with the feature inputs. To measure the difference between feature inputs and
reconstructed output, we used MSE loss in training. After several iterations, the loss has converged.

We then feed the features into the encoder and classify the output with a
Logistic Regression algorithm to determine if the tumor is LGG or HGG.

Meanwhile, we use Jaya optimization to optimize this regression. Using
Jaya optimization rather than the standard Adam optimizer offers a
multitude of benefits, the most obvious being speed and computational
efficiency. Since Jaya is not a gradient descent algorithm, there is no need
to calculate the partial derivative of the loss function, eliminating the vast
majority of the computational time that Adam (or other popular
optimizers) utilize. Another advantage is that Jaya optimization does not
require the use of hyperparameters. This eliminates the need for
hyperparameter experimentation and also reduces overall memory used
in the entire network; if we had more time, we could’ve taken advantage of this and used various
threading and/or parallel processing methodologies to reduce computation time by large factors.

An under the radar benefit of Jaya optimization is that (if an optimal solution exists) Jaya optimization
can find the optimal solution, it being the global solution, regardless of initial approximation. This is due
to the fact that the lack of partial derivatives means that Jaya uses random (but direction-oriented and
controlled) movements to find the global optimal solution by recording the best and worst solutions to
shift in the appropriate direction. This means that there is no “wrongful” solution that Jaya can provide; a
horrible initial approximation coupled with an un-ideal step size will just take longer to complete
optimization.



Known Limitations and Future Directions
This project could definitely benefit from more improvements. A list of possible future directions that we
have realized are as follows:

● In the current project, we only ran the algorithm on one slice per subject. If more time/computing
resources were available, we could run the algorithm on all 260 slices per subject to improve
classification performance and gain a more subjective view about strengths and weaknesses of the
model.

○ Optimize the efficiency of our model using techniques including (but not limited to):
threading, parallel processing, mathematical optimization, c-ython, and better use of
resource and computation allocation

● Experiment with other auto-encoder structures
● Run PCA analysis on the features we got from feature extractions to determine dependencies
● Constructing a 3D model of the brain from the 260 slices allowing for (a potential) ICA analysis
● Try other classification algorithms other than logistic regression, such as reinforcement learning
● Identify different regions in a tumor
● Create a novel methodology (besides bias weighting) to solve dataset imbalances
● Construct a predictive model that can not only identify, but also predict from the early states (i.e.

before the tumors is so large as it requires a surgical procedure for removal) whether LGG/HGG
will develop

Key Takeaways and Advice for Future Students/Instructors
Some key takeaways we have learned in this project are:

● Brain tumor detection and segmentation is a complex problem that requires the usage of multiple
methods to achieve a reasonable good performance

● Sometimes over complicated methods result in worse outcomes
● During pre/post-processing it is possible to over-process the image, resulting in loss of valuable

information
● Low accuracy rates should not be a cause to lose motivation, as sometimes just tinkering with

hyperparameters can lead to a huge jump in accuracy

For students who would be interested in taking this class or future instructors:
● Definitely start early or rent out a GPU as training without a GPU could take virtually forever
● Don’t be restrained by a state-of-art implementation, always feel free to experiment with any idea

that you have
● Understand the mechanism behind popular packages (especially in image classification) as then

one can tailor by customizing (custom writing) adjustments to a specific dataset and methodology
● Don’t be overwhelmed by the plentitude of possible ways to process image, as each has their own

advantages and disadvantages; choose the one that is most suitable, which isn’t always the most
popular method



References
[1] Lee, G., Gommers, R., Waselewski, F., Wohlfahrt, K., & O'Leary, A. (2019). PyWavelets: A
Python package for wavelet analysis. Journal of Open Source Software, 4(36), 1237.

[2] Andreux, M., Angles, T., Exarchakis, G., Leonarduzzi, R., Rochette, G., Thiry, L., ... &
Eickenberg, M. (2020). Kymatio: Scattering Transforms in Python. J. Mach. Learn. Res., 21(60),
1-6.

[3] Raja, P. S. (2020). Brain tumor classification using a hybrid deep autoencoder with Bayesian
fuzzy clustering-based segmentation approach. Biocybernetics and Biomedical Engineering,
40(1), 440-453.


