
ML_final_report

December 15, 2022

1 Instructions
This document is a template, and you are not required to follow it exactly. However, the kinds of
questions we ask here are the kinds of questions we want you to focus on. While you might have
answered similar questions to these in your project presentations, we want you to go into a lot more
detail in this write-up; you can refer to the Lab homeworks for ideas on how to present your data
or results.

You don’t have to answer every question in this template, but you should answer roughly this many
questions. Your answers to such questions should be paragraph-length, not just a bullet point. You
likely still have questions of your own – that’s okay! We want you to convey what you’ve learned,
how you’ve learned it, and demonstrate that the content from the course has influenced how you’ve
thought about this project.

2 Project Name
Project mentor: Xuan Zhang

Nick Lu tlu32@jh.edu, Keyi Ding kding5@jh.edu, Ting Li tli79@jh.edu

Link_to_git_repo

3 Outline and Deliverables
List the deliverables from your project proposal. For each uncompleted deliverable, please include
a sentence or two on why you weren’t able to complete it (e.g. “decided to use an existing imple-
mentation instead” or “ran out of time”). For each completed deliverable, indicate which section
of this notebook covers what you did.

If you spent substantial time on any aspects that weren’t deliverables in your proposal, please list
those under “Additional Work” and indicate where in the notebook you discuss them.

3.0.1 Uncompleted Deliverables

1. “Expect to complete #1”: Measure hate level of an article. (Lack of proper training data)
2. “Expect to complete #2”: Categorize different types of hateful language (racial, sexual, …).

(Lack of proper training data)
3. “Expect to complete #3”: Formalize hateful conduct policy. (Lack of sufficient research on

the topipc)
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4. “Wourld like to complete #1”: Apply to other languages. (Generally our method works, but
still lack of testing on a large scale)

5. “Wourld like to complete #2”: Generate non-offensive sentences.(Lack of proper training
data)

3.0.2 Completed Deliverables

1. “Must complete #1”: Preprocess input sentences to extract text information.
2. “Must complete #2”: Train neural network to predict whether a given sentence contains

hateful or offensive speeches.
3. “Must complete #3”: Generate a list of improper words.
4. “Would like to complete #3”: Take non-text information (such as emojis) into account.

3.0.3 Additional Deliverables

1. We implemented 2 models to do binary-classification and multi-class classification.

[ ]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.image as mpimg

4 Preliminaries
4.1 What problem were you trying to solve or understand?
What are the real-world implications of this data and task?

How is this problem similar to others we’ve seen in lectures, breakouts, and homeworks?

What makes this problem unique?

What ethical implications does this problem have?

We are trying to solve the problem of automating hate speech and offensive language detection.

Hate speeches are common on social media, and it would be easier for such speeches to be regulated
if some program can automatically detect them. The problem is similar to the language recognition
in hw3 lab in that we take a natural language input as a sequence, and train a model to predict some
labels associated with such input sequence. The unique part of this task is that hate speech/offensive
language is sometimes hard to detect because it really depends on the context the language is used.
By automating hate speech and offensive language detection, we could contribute to making a more
healthy internet environment.

4.2 Dataset(s)
##Describe the dataset(s) you used.

The dataset that we are working with is a corpus consists of sentences from Twitter with labels on
whether people think the sentences are hateful or offensive.
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##How were they collected? The data were collected using a crowd-sourced hate speech lexicon
to find hate speech containing tweets.

##Why did you choose them?

We chose this dataset because the baseline paper that we are referencing to collected the data.
##How many examples in each? The dataset that we chose contains 24773 examples. The 3
labels are hate_speech, offensive_language, and neither. class, essentially a vote, repre-
sents the majority crowdsourced opinion of whether a particular tweet belongs to hate_speech,
offensive_language, or neither.

[ ]: # Load your data and print 2-3 examples
data = pd.read_csv("/content/labeled_data.csv")
data['class'] = data['class'].replace(0, 1)
data['class'] = data['class']-1
data

[ ]: Unnamed: 0 count hate_speech offensive_language neither class \
0 0 3 0 0 3 1
1 1 3 0 3 0 0
2 2 3 0 3 0 0
3 3 3 0 2 1 0
4 4 6 0 6 0 0
… … … … … … …
24778 25291 3 0 2 1 0
24779 25292 3 0 1 2 1
24780 25294 3 0 3 0 0
24781 25295 6 0 6 0 0
24782 25296 3 0 0 3 1

tweet
0 !!! RT @mayasolovely: As a woman you shouldn't…
1 !!!!! RT @mleew17: boy dats cold…tyga dwn ba…
2 !!!!!!! RT @UrKindOfBrand Dawg!!!! RT @80sbaby…
3 !!!!!!!!! RT @C_G_Anderson: @viva_based she lo…
4 !!!!!!!!!!!!! RT @ShenikaRoberts: The shit you…
… …
24778 you's a muthaf***in lie &#8220;@LifeAsKing: @2…
24779 you've gone and broke the wrong heart baby, an…
24780 young buck wanna eat!!.. dat nigguh like I ain…
24781 youu got wild bitches tellin you lies
24782 ~~Ruffled | Ntac Eileen Dahlia - Beautiful col…

[24783 rows x 7 columns]

# Pre-processing

###What features did you use or choose not to use? Why? We take a sequence as an input and
take all the features in the sequence. This is because we use natural language as input, we use the
entire sequence. ###If you have categorical labels, were your datasets class-balanced? We have
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categorical labels, and our dataset is not class-balanced. The majority of the tweets are labeled as
offensive language. ###How did you deal with missing data? What about outliers? The dataset
we chose is free of missing data. Outliers in our case mainly consist of non-textual tweets. We
removed the outliers. ###What approach(es) did you use to pre-process your data? Why?

We leveraged regular expressions to pre-process the tweets. This is because we want to remove
the irrelevant, distracting information in the raw tweet data. Items including usernames, retweet
symbols and hashtags are removed. Following is a complete list of the things that are removed and
the corresponding regex.

Target Regex
Username @.*:" and "@.* "
Retweet !*\sRT
https r'https?://[^ ]+'
html bad encoding "&.*;"
Recurring letter '([A-Za-z])\1{2,}' to '\1'
Recurring punctuation '(\W)\1{1,}' to '\1'
Hashtag '#.* '
Non-alphanumeric [^A-Za-z0-9]+

###Are your features continuous or categorical? How do you treat these features differently? Our
features are categorical and we created a balanced input dataset.

[ ]: # For those same examples above, what do they look like after being␣
↪pre-processed?

data = pd.read_csv("/content/data_processed.csv")
data['class'] = data['class'].replace(0, 1)
data['class'] = data['class']-1
data

[ ]: Unnamed: 0 count hate_speech offensive_language neither class \
0 0 3 0 0 3 1
1 1 3 0 3 0 0
2 2 3 0 3 0 0
3 3 3 0 2 1 0
4 4 6 0 6 0 0
… … … … … … …
24768 25291 3 0 2 1 0
24769 25292 3 0 1 2 1
24770 25294 3 0 3 0 0
24771 25295 6 0 6 0 0
24772 25296 3 0 0 3 1

tweet
0 as a woman you shouldnt complain about cleani…
1 boy dats coldtyga dwn bad for cuffin dat hoe …
2 dawg you ever fuck a bitch and she start to c…
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3 she look like a tranny
4 the shit you hear about me might be true or i…
… …
24768 yous a muthafin lie right his tl is trash now …
24769 youve gone and broke the wrong heart baby and …
24770 young buck wanna eat dat nigguh like i aint fu…
24771 youu got wild bitches tellin you lies
24772 ruffled ntac eileen dahlia beautiful color com…

[24773 rows x 7 columns]

[ ]: # Visualize the distribution of your data before and after pre-processing.
# You may borrow from how we visualized data in the Lab homeworks.
data = pd.read_csv("labeled_data.csv")
#data['class'].value_counts()
label = [np.array([data["hate_speech"][i]/

↪data["count"][i],data["offensive_language"][i]/
↪data["count"][i],data["neither"][i]/data["count"][i]]) for i in␣
↪range(len(data))]

cla = [np.argmax(r) for r in label]
plt.hist(cla,align="left")
plt.xticks(np.arange(3),["hate","offensive","neither"])

[ ]: ([<matplotlib.axis.XTick at 0x7f516373dd00>,
<matplotlib.axis.XTick at 0x7f516373dcd0>,
<matplotlib.axis.XTick at 0x7f51637399d0>],

[Text(0, 0, 'hate'), Text(0, 0, 'offensive'), Text(0, 0, 'neither')])
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[ ]: data_p = pd.read_csv("data_processed.csv")
#data_p['class'].value_counts()
label_p = [np.array([data_p["hate_speech"][i]/

↪data_p["count"][i],data_p["offensive_language"][i]/
↪data_p["count"][i],data_p["neither"][i]/data_p["count"][i]]) for i in␣
↪range(len(data_p))]

cla_p = [np.argmax(r) for r in label_p]
plt.hist(cla,align="left")
plt.xticks(np.arange(3),["hate","offensive","neither"])

[ ]: ([<matplotlib.axis.XTick at 0x7f5165654c10>,
<matplotlib.axis.XTick at 0x7f5165654be0>,
<matplotlib.axis.XTick at 0x7f51636fc970>],

[Text(0, 0, 'hate'), Text(0, 0, 'offensive'), Text(0, 0, 'neither')])

Class Count_Before Count_After
Offensive Language 19190 19187
Hate Speech 4163 4158
Neither 1430 1428

# Models and Evaluation
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4.3 Experimental Setup
4.3.1 How did you evaluate your methods? Why is that a reasonable evaluation

metric for the task?

Since we used deep learning model to do multi-class classification, we chose accuracy as our major
evaluation metric while we also calculate other metrics including precision, recall, and F1 score.
### What did you use for your loss function to train your models? Did you try multiple loss
functions? Why or why not? For both binary classifier and 3-class classifier, we used cross-entropy
loss to train our model.

For the binary classifier, we used cross-entropy in order to minimize the difference in distribution
between our input labels and the predicted distribution.

For the 3-class classifier, we used a soft-label (a 3*1 vector) as the y label. The soft-label can be
seen as probability distribution over the three possible outcomes (hate, offensive, neither) based on
labelers’ votes, and our goal of training the model is to get a probability distribution that is close to
the y-label distribution. We experimented with KL-loss and cross-entropy to capture the difference
between the input and predicted distributions, and we decided to use cross-entropy because it gives
better results. ### Train-validation-test split We did a 80:16:4 train-validation-test split on the
dataset.Because our training dataset is not balanced, there are more “offensive language” than
“hate speech” and “neither”, we implemented a balanced train-validation-test split by normalizing
the dataset and adding more weight to “hate speech” and “neither”.

4.4 Baselines
###What baselines did you compare against? Why are these reasonable? We compared against
the results in the paper Automated Hate Speech Detection and the Problem of Offensive Language
by Davidson et al. We are performing the same task on the same dataset, but with different machine
learning methods, and we expect the results to be comparable. ###Did you look at related work
to contextualize how others methods or baselines have performed on this dataset/task? If so, how
did those methods do? The baseline paper that we are referencing to evaluated their models based
on three metrics: precision, recall, and F1 score. Their best performing model has a precision
of 0.91, recall of 0.90, and F1 score of 0.90. According to their confusion matrix, nearly 40% of the
hate speech are misclassfied.

[ ]: img1 = mpimg.imread('/content/davidsonetal.png')
plt.figure(figsize=[10,10])
imgplot = plt.imshow(img1)
plt.axis("off")
plt.title("Confusion Matrix")
plt.tight_layout()
plt.show()
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[ ]: # Code for loss functions, evaluation metrics or link to Git repo

Link to Git repo

5 Methods
##What methods did you choose? Why did you choose them?

We implemented two separate LSTM models to perform both a binary classification (offensive +
hate vs. neither) and 3-class classification (offensive vs. hate vs. neither). We first trained our own
Word2Vec model that converts the words into vectors based on our dataset, so that each sentences
become sequences of fixed-length vectors. We used the LSTM model to train the classifier because
our input data is natural language, and the LSTMmodel can learn the dependencies in the sequence.
We added additional layers with fewer dimensions before the final to-label layer to force the model

8

https://github.com/KeyiDing/ML_final_project/blob/main/ML_project_3labels.ipynb


to learn more representative features in the input data. We also used dropout to avoid overfitting.

##How did you train these methods, and how did you evaluate them? Why? We evaluated the
models by first constructing a confusion matrix. We then calculated the following four metrics:

1. Accuracy
2. Precision
3. Recall
4. F1 score

##Which methods were easy/difficult to implement and train? Why? The 3-class classifier is
more difficult to implement, and the main difference comes from the quality of the data. Because
there isn’t a clear boundary between hate vs. offensive language even for human evaluators, the
3-class classifier did not reach the precision we expected, and therefore we implemented the binary
classifier to take better advantage of the available data.

##For each method, what hyperparameters did you evaluate? How sensitive was your model’s
performance to different hyperparameter settings? For both models, we experimented with learning
rates and epochs. Our result showed that learning rate has a large influence on the optimizers’
ability to learn the data, and we eventually decided to use an adaptive learning rate which decreases
the learning rate when the change in loss is too small. Regarding the epochs, our 3-class classifier
is overfitted based our validation loss when the epochs is 100, and thus we decided to use early-
stopping and reduce the epochs to 75 to avoid overfitting.

[ ]: # Code for training models, or link to your Git repository

Git repository

[ ]: # Show plots of how these models performed during training.
# For example, plot train loss and train accuracy (or other evaluation metric)␣

↪on the y-axis,
# with number of iterations or number of examples on the x-axis.
img1 = mpimg.imread('/content/loss.png')
plt.figure(figsize=[10,10])
imgplot = plt.imshow(img1)
plt.axis("off")
plt.title("Valid Loss vs Epoch")
plt.tight_layout()
plt.show()
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5.1 Results
##Show tables comparing your methods to the baselines.

[ ]: img1 = mpimg.imread('/content/davidsonetal.png')
img2 = mpimg.imread('/content/confusion.png')
img3 = mpimg.imread('/content/binary.png')
plt.figure(figsize=[20,10])
plt.subplot(1,3,1)
imgplot = plt.imshow(img1)
plt.axis("off")
plt.title("Baseline Model")
plt.subplot(1,3,2)
imgplot = plt.imshow(img2)
plt.axis("off")
plt.title("Our Multi-class Model")
plt.subplot(1,3,3)
imgplot = plt.imshow(img3)
plt.axis("off")
plt.title("Our Binary-class Model")
plt.tight_layout()
plt.show()
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###What about these results surprised you? Why? Generally, our model can give more accurate
predicitions of longer sequences than shorter ones. Given that this is a multi-class classification
problem, Softmax function actually yields worse performance than ReLU does, though theoretically
it should give better results. ###Did your models over- or under-fit? How can you tell? What
did you do to address these issues? Our model overfits. As shown in the Valid Loss vs Epoch
diagram below, valid loss increases at around the 80-th epoch. We employed early-stopping to
address overfitting. The right side of the diagram represents the valid loss after implementing
over-fitting.

###What does the evaluation of your trained models tell you about your data? How do you expect
these models might behave differently on different data? Our training data is highly biased toward
offensive language, and our model prediction also shows that most hate speeches are predicted as
offensive. Even though we used balance split to normalize the data, we still cannot effectively learn
features from the hate and neither catalog. Thus we our expectation is that we might get a better
precision in hate speech and neither if we have a more balanced training set.

[ ]: # Show plots or visualizations of your evaluation metric(s) on the train and␣
↪test sets.

# What do these plots show about over- or under-fitting?
# You may borrow from how we visualized results in the Lab homeworks.
# Are there aspects of your results that are difficult to visualize? Why?
img1 = mpimg.imread('/content/overfit.png')
img2 = mpimg.imread('/content/index.png')
plt.figure(figsize=[20,10])
plt.subplot(1,2,1)
imgplot = plt.imshow(img1)
plt.axis("off")
plt.title("Epochs=150, overfit")
plt.subplot(1,2,2)
imgplot = plt.imshow(img2)
plt.axis("off")
plt.title("Epochs=75")
plt.tight_layout()
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plt.show()

## Deliverables ### Generate a list of improper words based on model prediction We put the
input tweets into the model and get a predicted label, then we do a binary classification based on
the label (hate/offensive v.s. neither). Then we get two lists of the most frequent words for each
class, and remove those words that appear in both lists (these words are supposed to be common
words in English, such as ‘I’, ‘you’, etc.). Then we take the remaining frequent “bad words” list as
the list of the improper words.

The current bad word list includes: ‘h ** s’,‘a ’,’sh * t’,’ni a’,‘ni ** as’,‘yall’,‘yo’

5.1.1 Training model with non-text information (emojis)

We also trained a model in which we didn’t remove any of the emojis. Though the emojis does not
have meanings in English, we can still view them as regular words, and thus does not affact the
training to much. The result is similar to the model when emojis are removed.

[ ]: plt.figure(figsize=[10,10])
emo = mpimg.imread('/content/emoji.png')
imgplot = plt.imshow(emo)
plt.axis("off")
plt.title("Emojis not removed")

[ ]: Text(0.5, 1.0, 'Emojis not removed')
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6 Discussion
6.1 What you’ve learned
Note: you don’t have to answer all of these, and you can answer other questions if you’d like. We
just want you to demonstrate what you’ve learned from the project.

###What concepts from lecture/breakout were most relevant to your project? How so? Concepts
including RNN, LSTM, and word embedding were most relevant to our project. We used
word2vec to learn word embedding. Since our model takes a sequence as input, and needs
memories to work with long-term dependencies, the LSTM model is a great tool to do the task.
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###What aspects of your project did you find most surprising? We were surprised that our model
performs better on longer sentences than shorter ones.

Moreover, we are perplexed by the fact that Softmax function performs worse than ReLU, given
that we are solving a multi-class classification task. ###What lessons did you take from this
project that you want to remember for the next ML project you work on? Do you think those
lessons would transfer to other datasets and/or models? Why or why not? During the process of
building this hate speech and offensive language classification model, we became conscious of the
importance of spending time finding a class-balanced training dataset. If the dataset chosen was
not balanced in the first place, it would take a heavy toll in the model development process to make
up for the imbalanced data.

###What was the most helpful feedback you received during your presentation? Why? The most
helpful feedback we received is to change discrete integer labels to soft labels. Soft labels could
capture the degree of membership of sentences to all the classes. This method avoids the hard
classification of all samples to one certain class, thus makes the model more resilient.

###If you had two more weeks to work on this project, what would you do next? Why? If we
had two more weeks, we would like to

1. find a larger dataset that contains more non-hate speech and non-offensive language tweets,
namely more neither entries.

2. apply our model to other languages. This would give us a chance to examine whether our
model is language specific. It would be both challenging and rewarding to attempt to design
a language universal model to automate hate speech and offensive language detection in a
global context.

3. take non-textual information (such as emojis, emoticons) into account. Given that emoji-
based hate is on the rise, it is crucial to develop models to detect hate speech and offensive
language conveyed through non-textual contents.
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