What Should We Grow Today so We Make Money Tomorrow

Reinforcement Learning for Small Farmers

Nick Lu, Jasmine Stefano Mentor: Aviva Prins

Table of Contents

- Background
- Markov Decision Process
- Some Math
- Offline vs. Online
- Previous Work
- Our Algorithm
- Results

Challenge

Our aim has been to develop an optimization-driven support system to produce actionable and explainable instruction for farmers in a realistic, dynamic environment, providing a tool geared towards maximizing profits.

Decision support system

Example policy:

- Plant eggplant in December 2021
- Plant **cucumber** in March 2022
- Plant **beetroot** in July 2022
- Plant **cucumber** in October 2022

Markov Decision Processes (MDP)

State space: (crop, maturity, expiry, flag)

Action space: (no act, plant crop{1,...,n}, harvest)

Transition function: P(S,a,S')

Reward function: $R(S,a) = \begin{cases} < 0 & \text{if action yields constraint violation} \\ \$(crop) & \text{if action is harvest} \\ 0 & \text{otherwise} \end{cases}$

profit

₹ 1,000

profit

Reinforcement Learning

Goal: Maximize expected total discounted reward:

H $\mathbb{E}[\sum \gamma^t R(s_t, a_t) | \pi]$ t=0

- H: Horizon
- γ : discount factor
- R : reward function
- π : policy

Reinforcement Learning

Bellman Equation:

$$V(s) = \sum_{s'} P(s, \pi(s), s')(R(s, \pi(s)) + \gamma V(s'))$$

$$s : \text{state} \quad s' : \text{next state}$$

$$P : \text{transition function}$$

$$\gamma : \text{discount factor}$$

$$R : \text{reward function}$$

$$\pi : \text{Policy}$$

$$V : \text{Value function}$$

Reinforcement Learning

Choose action such that it yields the max expected reward:

$$\pi(s) = \arg\max_{a} \sum_{s'} \underbrace{P(s, a, s')}_{\text{transition}} \underbrace{R(s, a)}_{\text{reward}} + \gamma \cdot \underbrace{V(s')}_{\text{future reward}}$$

- s: state s': next state
- a: action
- γ : discount factor
- V: Value function

Offline vs. Online

Offline Reinforcement Learning

Reinforcement Learning with Online Interactions

Previous Work

The offline implementation uses forecast models to precompute **predicted future market prices**.

Online Algorithm

Algorithm 1 Follow the Weighted Leader for MDP

Input: Transition matrix P, parameter $\theta \in [0, 1)$, initial state s_0 **Initialization:** \hat{R}_0

1: for t = 1 : H do

2: Update the weighted average of history rewards:

$$\hat{R}_t = (1-\theta)\hat{R}_{t-1} + \theta R_{t-1}$$

3: Solve the MDP given reward matrix \hat{R}_t for the average optimal policy:

$$\pi_t \in \argmax_{\pi} g_{\hat{R}_t}(\pi)$$

- 4: Execute π_t , Update current State s_t
- 5: $R_t \leftarrow \text{true reward matrix}(\text{from market data})$
- 6: **end for**

Output: π_t at each time step $t = 1, \ldots, H$

Y. Li and N. Li, "Online Learning for Markov Decision Processes in Nonstationary Environments: A Dynamic Regret Analysis", 2019

Benefits

• Reduced state space complexity:

- By converting this model from offline to online, we took out the time component in state space, reducing the complexity of state space from order of 10^7 to 10^5 , by a factor of 100.
- Avoid inaccurate price forecast:
 - Offline model suffers from inaccurate forecasting to generate policy
- Smaller memory for storing data:
 - Since online algorithm only needs current information, much smaller memory is required.

Simulation Results

Simulation Results

THANK YOU

References

• Y. Li and N. Li, "Online Learning for Markov Decision Processes in Nonstationary Environments: A Dynamic Regret Analysis," 2019 American Control Conference (ACC)

• What Should I Grow Today So I Make Money Tomorrow? Supporting Small Farmers' Crop Planning with Social, Environmental, and Market Data. A Prins, C Herlihy, JP Dickerson, Practical ML for Developing Countries Workshop, ICLR 2022