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Reinforcement Learning for Small Farmers
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Challenge
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Our aim has been to develop
an optimization-driven
support system to produce
actionable and explainable
instruction for farmers 1in a
realistic, dynamic
environment, providing a tool
geared towards maximizing
profits.



Decision support system

Example policy:

Plant eggplant
Plant cucumber
Plant beetroot

Plant cucumber

in December 2021
in March 2022
in July 2022

in October 2022



Markov Decision Processes (MDP)

State space: (crop, maturity, expiry, flag)
Action space: (no act, plant crop{l,...,n}, harvest)
Transition function: P(S,a,S’)

(‘
< 0 if action yields constraint violation

Reward function: R(S,a)=< $(crop) 1if action is harvest

0] otherwise
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Reinforcement Learning

Goal: Maximize expected total discounted reward:

H
5 A R(sy, af)|7
—0

H : Horizon

v . discount factor

R : reward function
7 : policy



Reinforcement Learning

V(s) =)  P(s,m(s),s")(R(s,7(s)+1V (s

s state s’ :next state
P : transition function

~v @ discount factor

R : reward function

7 : Policy

V' : Value tunction



Reinforcement Learning

Choose action such that it yields the max expected reward:

_ P /
m(s) = arg max, Z s,a,8 )(R(s,a)+y- V() )

s’ transition reward future reward

s state s’ :next state
a : action

v . discount factor

V' . Value function



Offline vs. Online

Offline Reinforcement Learning

Environment

)




Previous Work

The offline implementation uses forecast models to
precompute predicted future market prices.
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Online Algorithm

Algorithm 1 Follow the Weighted Leader for MDP

Input: Transition matrix P, parameter 6 € [0, 1), initial state s
Initialization: RO

1: fort=1: H do

2: Update the weighted average of history rewards:

Ri=(1—-0)Ri_1 +6R,_1
8: Solve the MDP given reward matrix R, for the average optimal policy:

Ty € argmax gy ()

4: Execute m;, Update current State s;
5: R; < true reward matrix(from market data)
6: end for

Output: m; at each time stept=1,..., H

Y. Li and N. Li, "Online Learning for Markov Decision Processes in Nonstationary Environments: A Dynamic Regret
Analysis", 2019



Benefits

e Reduced state space complexity:

o By converting this model from offline to online, we took out the time
component in state space, reducing the complexity of state space from

order of 10" to 10°, by a factor of 100.
e Avoid inaccurate price forecast:
o Offline model suffers from inaccurate forecasting to generate policy
e Smaller memory for storing data:

o Since online algorithm only needs current information, much smaller

memory 1S required.



Simulation Results
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Simulation Results
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